четверг, 13 октября 2011 г.

Колышки и колечки

Встретил задачку от фейсбуковцев и амазонцев (амазонок?). Можно рассчитывать на возможность приема в штат этих мастодонтов решив задачку за отведенные для этого 45 мин. Идея к решению задачи у меня возникла как раз в эти 45 минут, но оформить промежуточный результат удалось только на второй день. Задачку публикую ниже, а ответ будет примерно через неделю. Не уверен, что решение является оптимальным.

There are K pegs. Each peg can hold discs in decreasing order of radius when looked from bottom to top of the peg. There are N discs who have radius 1 to N; Given the initial configuration of the pegs and the final configuration of the pegs, output the moves required to transform from the initial to final configuration. You are required to do the transformations in minimal number of moves.

A move consists of picking the topmost disc of any one of the pegs and placing it on top of anyother peg.

At anypoint of time, the decreasing radius property of all the pegs must be maintained.

Constraints:

1<= N<=8

3<= K<=5

Time Limit: 60 seconds.

Input Format:

N K

2nd line contains N integers, each in the range 1 to K, the i-th integer denotes, the peg to which disc of radius i is present in the initial configuration.

3rd line denotes the final configuration in a format similar to the initial configuration.

Output Format:

The first line contains M - The minimal number of moves required to complete the transformation.

The following M lines describe a move, by a peg number to pick from and a peg number to place on.

If there are more than one solutions, it's sufficient to output any one of them. You can assume, there is always a solution with less than 7 moves and the initial confirguration will not be same as the final one.

Sample Input #00:

2 3

1 1

2 2

Sample Output #00:

3

1 3

1 2

3 2

Sample Input #01:

6 4

4 2 4 3 1 1

1 1 1 1 1 1

Sample Output #01:

5

3 1

4 3

4 1

2 1

3 1

Комментариев нет: